Skip to main content

Setting Environment Variables !!!

Need to change or set the value of an environment variable programmatically and without the need to restart/log off the machine. I need the change to reflect for all processes, ie, I need to change the global environment value and not the one in the PEB [Process Environment Block] of a process. Frustated with setting the value of an environment variable !!!

For getting the set of environment variables or to get the value of an environment vaible from your C# program, there is the GetEnvironmentVariables/GetEnvironmentVariable API in the System.Environment class. But there is no API for setting the value of an environment variable.

The system environment variables are stored in the registry under HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Environment.

The [current] user environment variables are stored in the registry under HKEY_CURRENT_USERE\Environment.

When the system boots up, the environment is built from this list in the registry. If we change the value directly in the registry, the change does not effect. For example, change the value of TEMP variable that specifies the temporary files directory, in the registry and check with the set command in the command prompt, you won't see the change you made. Or just create a new entry in the registry under the one of the above mentioned registry paths, you won't see the change. Also you can verify that programmatically with GetEnvironmentVariable API.

But the changes you made will be reflected after a log off or restart. After some research, I found the Win32 SDK API SetEnvironmentVariable. But unfortunately, it just the changes the variable value in the PEB of that process alone, it does not effect the global environment values. Pathetic.

There is definitely a solution for this simple and primary problem. All we have to do is to update the registry as we discussed before, and also notify that the global enviroment variable list has been modified. Ok, how do we do that ?

Simple, one line of code.

// Broadcast the WM_SETTINGCHANGE message for Enviroment

SendMessageTimeout(HWND_BROADCAST, WM_SETTINGCHANGE, 0,
(LPARAM) "Environment",
SMTO_ABORTIFHUNG,
5000, &dwReturnValue);

Of course, this is C++ code. Not a big deal to do that in C# or whatever.

Comments

Popular posts from this blog

Implementing COM OutOfProc Servers in C# .NET !!!

Had to implement our COM OOP Server project in .NET, and I found this solution from the internet after a great deal of search, but unfortunately the whole idea was ruled out, and we wrapped it as a .NET assembly. This is worth knowing. Step 1: Implement IClassFactory in a class in .NET. Use the following definition for IClassFactory. namespace COM { static class Guids { public const string IClassFactory = "00000001-0000-0000-C000-000000000046"; public const string IUnknown = "00000000-0000-0000-C000-000000000046"; } /// /// IClassFactory declaration /// [ComImport(), InterfaceType(ComInterfaceType.InterfaceIsIUnknown), Guid(COM.Guids.IClassFactory)] internal interface IClassFactory { [PreserveSig] int CreateInstance(IntPtr pUnkOuter, ref Guid riid, out IntPtr ppvObject); [PreserveSig] int LockServer(bool fLock); } } Step 2: [DllImport("ole32.dll")] private static extern int CoR

Extension Methods - A Polished C++ Feature !!!

Extension Method is an excellent feature in C# 3.0. It is a mechanism by which new methods can be exposed from an existing type (interface or class) without directly adding the method to the type. Why do we need extension methods anyway ? Ok, that is the big story of lamba and LINQ. But from a conceptual standpoint, the extension methods establish a mechanism to extend the public interface of a type. The compiler is smart enough to make the method a part of the public interface of the type. Yeah, that is what it does, and the intellisense is very cool in making us believe that. It is cleaner and easier (for the library developers and for us programmers even) to add extra functionality (methods) not provided in the type. That is the intent. And we know that was exercised extravagantly in LINQ. The IEnumerable was extended with a whole lot set of methods to aid the LINQ design. Remember the Where, Select etc methods on IEnumerable. An example code snippet is worth a thousand

sizeof vs Marshal.SizeOf !!!

There are two facilities in C# to determine the size of a type - sizeof operator and Marshal.SizeOf method. Let me discuss what they offer and how they differ. Pardon me if I happen to ramble a bit. Before we settle the difference between sizeof and Marshal.SizeOf , let us discuss why would we want to compute the size of a variable or type. Other than academic, one typical reason to know the size of a type (in a production code) would be allocate memory for an array of items; typically done while using malloc . Unlike in C++ (or unmanaged world), computing the size of a type definitely has no such use in C# (managed world). Within the managed application, size does not matter; since there are types provided by the CLR for creating\managing fixed size and variable size (typed) arrays. And as per MSDN, the size cannot be computed accurately. Does that mean we don't need to compute the size of a type at all when working in the CLR world? Obviously no, else I would